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Super-slippery carbon nanotubes

Symmetry breaking breaks friction
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Abstract. The friction between the walls of multi-wall carbon nanotubes is shown to be extremely low in
general, with important details related to the specific choice of the walls. This is governed by a simple
expression revealing that the phenomenon is a profound consequence of the specific symmetry breaking:
super-slippery sliding of the incommensurate walls is a Goldstone mode. Three universal principles of
tribology, offering a recipe for lubricant selection are emphasized.

PACS. 61.48.+c Fullerenes and fullerene-related materials – 62.20.Qp Tribology and hardness

1 Introduction

Various possible applications of the carbon nanotubes [1]
motivate extensive investigations of their remarkable
physical properties. Recently, the experiment [2] con-
firmed previous symmetry based [3] and numerical [4,5]
predictions of the extremely small friction between the
single-wall tubes forming a double-wall one (DWT). Here
we present a complete theoretical discussion of such
behavior. To this end we analyze seven DWTs W′-W
(Tab. 1). The wall W′ is (12,12); its radius is D′/2 =
8.14 Å. The wall W is one of the remaining tubes (n1, n2).
The first three with radii D/2 ≈ Rin = 4.7 Å, are suitable
for the inner wall, and the last four with D/2 ≈ Rout =
11.57 Å, as the outer one. The first part of the paper gives
exhaustive insight into a variety of interesting phenomena.
Then the results are reconsidered to extract three general
principles profoundly relating interaction and symmetry,
leading to the final conclusion: the reduction of friction is
due to the incompatibility of the DWT walls symmetries.

2 Symmetry and interaction of the walls

Any single-wall tube (n1, n2) is completely determined
by its symmetry group [3]. The U -axis maps the atom
C000 to the second one C001. Then the successive rota-
tions Cn for the tube ϕ-period φ = 2π/n (n = G(n1, n2)
where G is the greatest common divisor) yield the initial
monomer with 2n atoms C0su (s = 0, . . . , n− 1; u = 0, 1).
Finally, the screw axis generator (Crq |na/q) arranges the
monomers helically, translating (for na/q) and rotating
(through 2πr/q) them along the z-axis. Here, q is the or-
der of the isogonal group principle axis, a is the transla-
tional z-period and r is the integer related to the chirality.
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Let the x-axis of the coordinate system be rotated for Φ
and translated for Z along the z-axis to coincide with the
tube U -axis. Then the coordinates rtsu = (D/2, ϕtsu, ztsu)
of the tth monomer atom are:

ϕtsu = (−1)uϕ0 + 2π(
tr

q
+
s

n
) + Φ, (1a)

ztsu = (−1)uz0 + t
n

q
a+ Z, t = 0,±1, . . . . (1b)

Here a0 = 2.461 Å, ϕ0 = n1+n2
πD2 a2

0, z0 = n1−n2

2
√

3πD
a2

0.
Firstly, we look for the potential V (ϕ, z) produced by

W ′ at the arbitrary point r = (D/2, ϕ, z). Since this is nec-
essarily invariant under the symmetry group W′, V (ϕ, z)
it can be expanded in the basis of invariant functions or
harmonics. The suitable basis invariant under the U -axis
defined by Φ and Z is (M = 0, 1, . . . ; ω real):

CMω (ϕ, z) = cos(M(ϕ− Φ) + 2πω(z − Z)). (2a)

There is unique combination of CMω and CM−ω , namely
AMω (ϕ, z) = CMω (ϕ, z) + CM−ω(ϕ, z), (M,ω ≥ 0), (2b)

invariant under the mirror planes through U . The invari-
ance CnCMω (ϕ, z) = (Crq |na/q)CMω (ϕ, z) = CMω (ϕ, z) un-
der roto-helical symmetries restricts M and ω:

M = 0 mod n, (rotations), (3a)
Mr + ωna = 0 mod q (helical). (3b)

All the solutions of this type of system of equations are
M = M∗L, ω = ω∗K, Y L+K = 0 mod X, (4)

for L,K = 0,±1, . . . and the integer constants M∗, ω∗, X
and Y (G(X,Y ) = 1). In the rectangular 2D lattice with
the periods M∗ and ω∗, the allowed pairs (M,ω) form the
sublattice with the cell (0, 0), (0,−ω∗X), (M∗,−ω∗Y ) and
(M∗, ω∗X − ω∗Y ). This cell with area M∗ω∗X contains
only the trivial solution M = ω = 0. Particularly, (3)
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Fig. 1. The potential V (ϕ, z) of (12,12) at ρ = Rin (left) and
ρ = Rout (right) within the ϕ- and z-periods φ′ and a′, with
the expansion amplitudes αMω below.

is solved by (4) for ω∗ = a−1, M∗ = n, X = q/n and
Y = r and the cell area is γ = q/a. This singles out the
harmonics CMω and AMω of the chiral and achiral tubes.
The harmonics ϕ- and z-periods are φ/L and a/|K|; those
with M = n and ω = ±a−1 are invariant under the roto-
helical symmetries of W only, while the others have L|K|
times finer periodicity.

Consequently, the allowed M and ω for (12,12) tube,

M = 12L, ω = K/a0, L+K = 0 mod 2, (5)

single out the harmonics A′Mω in (2b). Further, for the
W′ wall we fix Φ = Z = 0 (x-axis is chosen as the U -axis
of W′). Therefore, one finds:

V (ϕ, z) =
∑
tsu

VC(r− r′tsu) =
∑′

M,ω≥0

αMω A
′M
ω (ϕ, z), (6)

where the prime indicates the summation over the solu-
tions of (5) only. We calculate the potential using the left
part of (6) with VC being a Van der Waals type inter-
atomic potential fitted with a π⊥-bonding [5]. The sum
over 82 monomers (41 elementary cells with 1968 atoms)
is scanned in 41 × 41 points within ϕ ∈ [0, π/6) and
z ∈ [0, 1). The fast Fourier transform yields the ampli-
tudes αM=12L

ω=K (L,K = 0, . . . , 20) on the right of (6). The
results for Rin and Rout are shown in Figure 1. As the
potential V (ϕ, z) practically does not vary on the 10−1 Å
scale (in the vicinity of Rin and Rout) these plots refer
to all the DWTs listed in Table 1. Arbitrary constant α0

0
is set to zero. No aliasing occurs, the functions excluded
by (5) have zero amplitudes, while the amplitudes of the
harmonics rapidly decrease with L and K, and become
negligible (within the numerical error of 10−10 meV) out
of the depicted range. This property is nicely illustrated

Table 1. DWTs family W-(12, 12). The row of W= (n1, n2)
gives: symmetry groups LG of W (Tr

q(a)Dn or Tr
q(a)Dnh for

W chiral or achiral) and G∩ of W-W′, common solutions XM∗
ω

of (3) and (5) in the form of (4), cell areas S1 and S∩ of
the harmonics of LG and G∩ and the breaking rate S. For
commensurate DWT G∩ = TR

Q(A)CN (line group), S1 = γ =
q/a, S∩ = Γ = Q/A and S = γγ′/Γ . For incommensurate
DWT G∩ = CN (point group), S1 = q, S∩ = G(q, q′) and
S = qq′G(q, q′). The periods a and A are in units of a0.

W LG (line group) G∩ XM∗
ω∗ S1 S∩ S

(12,0) T1
24(
√

3)D12h C12 124
0 24 24 24

(7,7) T1
14(1)D7h T1

1(1)C1 1168
2 14 1 336

(11,2) T45
98(7)D1 T1

1(7)C1 7168
2 14 1

7 2352

(12,12) T1
24(1)D12h 24

(17,17) T1
34(1)D17h T1

1(1)C1 1408
2 34 1 816

(18,16) T51
868(
√

651)D2 C2 15208
0 868 4 5208

(29,1) T1683
1742(

√
2613)D1 C1 120904

0 1742 2 20904

(24,9) T317
582(
√

291)D3 C3 12328
0 582 6 2328

in the density plot (Fig. 1) of the potential V (ϕ, z): It is
notably periodic only with the periods of the tube.

With fixed position of W′-wall, the W′-W relative
positions the mutual interaction are determined by Φ and
Z of the W-wall U -axis. The interaction is the sum of the
potential (6)values in the positions (1) of W atoms:

V (Φ,Z) =
∑′

M,ω≥0

∑
tsu

αMω A
′M
ω (ϕtsu, ztsu). (7)

For the infinite W-wall the summation over u, s and t
easily gives the interaction per the W-wall atom:
v∞(Φ,Z)=

∑′′

M≥0,ω

cos(MΦ+ 2πωZ)2αM|ω| cos(Mϕ0 + 2πωz0).
(8)

Here the double prime restricts the summation to M
and ω satisfying simultaneously (5) and (3) for the W-wall
parameters. This means that the interaction is mediated
only by those W′-harmonics which are also invariant under
the roto-helical symmetries of W. Then the allowed M -ω
values (solutions of the system (3–5) are given by (4) with
Y = 1 andM∗, ω∗ andX as listed in Table 1. The absolute
value of the constants in the second line of (8) roughly
determines the variation of v(Φ,Z), i.e. the corrugation [5]
per W-atom. Obviously, this is small whenever the area
M∗ω∗X is large: large M and ω indicate small |αMω |.

For the incommensurate (a′/a irrational) walls, ω∗ =
0. Consequently the mediating harmonics are constant
along Z, yielding Z-independent v∞. Further more M∗ =
qq′/G(q, q′) (X = 1 imposes no restriction). An ideal in-
finite wall slides along the tube axis exactly without fric-
tion, while the rotational friction oscillates with the Φ-
period 2π/M∗. Figure 2 presents the calculated interac-
tion v∞(Φ) for the (12,0) wall with Φ-period of φ′/2. In
all other cases M∗ is rather large, allowing only very high
M of the mediators so their amplitudes are beyond the ac-
cessible numerical precision and the computed interaction
vanishes, indicating small friction. In the commensurate
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Fig. 2. The corrugation per atom dependence of the W -wall
monomer number for the considered DWTs. Inset: v∞(Φ) for
the wall (12,0), and v∞(Z) for (7,7) and (17,17) (for the other
walls v∞(Φ,Z) is below the precision).

cases M∗ is large: the Φ-dependence of the interaction
stems from the harmonics with extremely small ampli-
tudes, giving negligible rotational friction. The calculated
interaction is only Z dependent (Fig. 2), with the Z-period
a′/2 (since w∗ = 2). In particular, for the (11,2) wall
X = 7. This additionally forbids all the numerically sig-
nificant harmonics so (11,2)-(12,12) walls friction is ex-
tremely weak.

For the finite W-wall with m monomers, the interac-
tion is also obtained from (7). The horizontal symmetry
axis of W is in the middle of the ring: Φm = Φ+ 2πr

q
m−1

2

and Zm = Z + na
q
m−1

2 . The summation over u, s and
t = 0, . . . ,m− 1 gives:

vm(Φ,Z) =
′′∑

M≥0,ω

cos(MΦm + 2πωZm)

× 2αM|ω| cos(Mϕ0 + 2πωz0)
1
m sin(πm rM+naω

q )

sin(π rM+naω
q )

· (9)

The double prime here restricts the summation to the so-
lutions of the system (3a–5) for M∗ = nn′/N , ω∗ = 1/a′,
X = 2 and Y = n/N , with N = G(n, n′). In fact, since the
ringW has only rotational symmetries, this again restricts
the interaction mediators to the common roto-helical har-
monics. The infinite-wall mediators, also satisfying (3b)
are only a portion of these.

Quite interesting phenomena follow from (9). In the
second line in (9) the quasi-oscillations of the corrugation
per atom are damped by 1/m. However, both the numera-
tor and denominator vanish for the infinite walls mediators
(8), giving m-independent terms which are summed in v∞.
The additional exclusively finite wall mediators give the
damped oscillations superimposed onto v∞ as is obvious
from Figure 2. Although numerically v∞ may vanish, in
reality it is always small and the total corrugation always
increases with m. For the (7,7) wall only the infinite wall
mediators are numerically recorded, while for (17,17) they
dominate by several orders of magnitude. Since M = 0,

the rotational friction is almost negligible for any m. On
the contrary, for (12,0) the rotational friction is dominant.
For the other tubes the infinite wall mediators are not
recorded, and both rotational and translational friction
components significantly oscillate with m and finally ap-
proach zero. A peculiarity of the commensurate cases is
that whenever m is a multiple of qA/na, i.e. when the
ring length is a multiple of the W-W′ translational period
A, all the numerators vanish. Only the infinite wall media-
tors contribute and vm = v∞: the infinite wall corrugation
per atom is exactly regained by this sharp resonant effect!
This is illustrated in Figure 2 for an (11,2) wall: v98k van-
ishes and the ring moves coaxially almost freely (if m is an
odd multiple of 49, corrugation is small but observable).
For (7, 7) and (17, 17) this effect (at m even) is not signif-
icant since for any m only the infinite wall mediators are
important.

3 Symmetry breaking

The performed symmetry based harmonic analysis ex-
plains all the observed phenomena [2,3,5]. Yet, it reveals
a quite profound interrelation of symmetry and interac-
tion. To enlighten this, we summarize the main points of
Section 2 into the three general principles.

A: the field produced by an isolated system W′ is in-
variant under the symmetry group of W′. Otherwise some
measurement would identify a different symmetry group.
So, the W′-produced potential V (r) is an invariant func-
tion, which is expanded in harmonics only. All but the
lowest harmonics are invariant under supergroups of the
W′ symmetry group (finer periods forM, |ω| > 1 remarked
below (4)).

B: the harmonics with large supergroups have small
expansion amplitudes. Really, |αMω | sharply decreases and
rapidly becomes negligible with M and ω.

C: the external field V effects the system W only by the
maximal part of V which is invariant under the symme-
try of W . Thus, only the projection of V on the subspace
of the W -harmonics counts, while the contribution of the
orthogonal part vanishes. Indeed, the interaction is me-
diated only by those W′ harmonics that are additionally
invariant under the roto-helical symmetries of W. Even for
them, from (2) it follows that A′M

′

ω of W′ is orthogonal for
all CMω of W unless M = M ′ and ω = ±ω′. Therefore the
projected A′M

′

ω is CM±ω(ϕ, z) cos(MΦ±ωZ). Due to the W -
wall invariance of CMω , it has the same value CMω (ϕ0, z0)
over all the W atoms Ctsu, giving immediately (8). Anal-
ogously, the first line in (9) is the damping cosine and the
second one is the sum of CMω values at different monomers.
Acting on each atom, the ring symmetry group Dn gives
a monomer only, and a Dn-harmonic CMω has a constant
value.

From A and C it follows that the symmetries of W′
and W restrict their interaction only to the W′-harmonics
which have invariant parts with respect to the W-wall
symmetry. This is realized in two steps. Firstly, since
the roto-helical symmetries of the W and W′ walls form
mutually commuting subgroups G and G′ (of L(1)-type,

R
a
p
id
e
N
o
te

R
a
p
id

N
o
te



134 The European Physical Journal B

[3]), the harmonics of G′ can be chosen to be either
harmonics of G (becoming mediators) or orthogonal to
them (giving no contribution). Secondly, noncommuting
U and U ′ select out the linear combinations (2) of G- and
G′-harmonics, which are not mutually orthogonal. The
parities thus introduce the cosine factors in (8) and (9)
which damp the mediator amplitudes. Generally, the re-
duction of the mediators (indicated by the double primes)
is caused by the mutually commuting symmetries only.
These are the primary determinants of the interaction
scale (selecting the mediators amplitudes gives the na-
ture of the interatomic forces). Still, all the symmetries
contribute to fine tuning. The damping factors and the
mediator values (scaled by the amplitudes!) at the atoms
cause position dependence of the interaction, and this is
the origin of friction.

The profound relationship between symmetry and fric-
tion suffices to estimate the primary rarefaction effect
in terms of the commuting subgroups. The cell area of
the wall harmonic sublattice is γ = q/a (remark after
(4)). This quantity directly measures roto-helical symme-
try. The larger symmetry gives severer restrictions (3) and
sparser harmonics. (Alternatively, since all W-atoms are
obtained by the action of its symmetry group on C000,
their linear z-density equal to 2γ, measures the order of
the group [3].) Further, the area S = M∗ω∗X points
to the lowest mediators, inversely estimating the fric-
tion. Inspection of Table 1 in the commensurate cases
shows that S = γγ′/Γ , where Γ = Q/A measures the
DWT symmetry group. The established result in the form
S = |G ⊗ G′|/|G∩| (the order of the direct product is
|G⊗G′| = |G||G′|) means that S is the symmetry break-
ing rate from the group G⊗G′ to the actual DWT sym-
metry group G∩ = G∩G′. And, G⊗G′ is the symmetry
group of the non-interacting W-W′ pair. Independently
performed transformations of G and G′ preserve the sys-
tem energy. In this sense the interaction itself imposes
a symmetry breaking. As usual (Jahn-Teller-effect, crys-
tal phase transitions, particle physics symmetry breaking),
this produces S = |G||G′|/|G∩| equivalent minima in the
total energy. The density of minima increases with the
breaking rate, while the mediator amplitudes, and thus
the energy variation, decreases according to principle B.
In the limit, in the incommensurate cases, the energy is
constant along some path and the wall motion is super-
slippery along it. This is a Goldstone mode like phason
in the incommensurate phase transitions. Even then, the
remaining pure rotational friction reflects the breaking of
the rotational symmetry. The z-independent mutual in-
teraction (ω = 0) makes the walls effective symmetry
groups, Cq′ and Cq (isogonal to G′ and G), with the
intersection CG(q,q′), and breaking rate qq′/G(q, q′). For
the incommensurate DWT this equals M∗ following from
(8) (Tab. 1), giving the first allowed mediator (M∗, 0).
For the (12,0–12,12) walls M∗ = 24 and they interact by
the W′-harmonic with L = M/n’= 2. This is the low-
est possible DWT mediator, which produces the maximal
rotational W-W′ friction. In fact, due to the one-to-one
correspondence of the single-wall tubes to their symme-

try groups, the symmetries of the walls are quite incom-
patible. The symmetry breaking and harmonics reduction
are very strong, giving the mediating harmonics with very
small amplitudes.

4 Concluding remarks

Theoretical analysis completely explaining the diversity
of observed phenomena [2,3,5] and revealing some new
subtle effects is presented. Its importance for tribology is
emphasized by the generality of the symmetry arguments,
which can refer to other structures with different type of
symmetries [6]. For example, for DWT with both walls
incomplete, the corrugation should decrease with the ro-
tational symmetry breaking rate nn′/N . The underlying
principles A and C are purely theoretical (the proof is
based on the group averages), while B is phenomenolog-
ical. Note that only its global validity is expected: the
amplitude of the harmonics may locally increase (e.g.
|α36

1 | > |α12
1 | for D/2 = Rout) due the complex structure

of the system or some hidden symmetry of the potential.
We add several remarks at the end. The minima of

the potential (8) determine the equilibrium positions of
the W-wall. For the achiral walls minima of v∞ (inset of
Fig. 2) show that such DWTs have mirror planes [3]. Lin-
ear and angular momentum quantum numbers of the vi-
brational modes of the rotational and translational walls
displacements are k = m = 0; such modes can be de-
tected by Raman scattering. Their frequencies may be es-
timated by expanding the potential at a minim [7]. For
sufficiently long DWTs under consideration, the maxi-
mum modes are given by the inset of Figure 2: the ro-
tational ω(12,0)

Φ ≈ 21 cm−1, and two translational ω(7,7)
Z ≈

151 cm−1, ω(17,17)
Z ≈ 85 cm−1. The others (almost) fric-

tionless degrees appear as (almost) acoustic modes. This
may be a hint to test the friction by the Brillouin scatter-
ing. Combined with the described resonant corrugation
effect, this can facilitate the experimental identification
of the walls of the sample tubes. Finally, the rotational
and translational displacements are in general coupled in
two helical normal modes, corresponding to the maximum
and minimum gradient of the mediators. This interesting
(and possibly applicable) screwing effect may be estimated
within the presented framework.
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Milosević et al., Eur. J. Phys. B 17, 707 (2000).
7. Y. Kwon, D. Tomanek, Phys. Rev. B 58, 16001 (1998).

R
a
p
id
e
N
o
te R

a
p
id

N
o
te


